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An existence theorem for a best approximation to a function in Lp , 1~ P~ 00,

by functions from a nonconvex set is established under certain general conditions
on the set. The unifying development and results are applicable to approximation
from subsets of various classes of functions including quasi-convex, convex, super
additive, star-shaped, monotone, and n-convex functions. © 1989 Academic Press, Inc.

1. INTRODUCTION

Consider the problem of finding a best approximation from a nonconvex
(i.e. not necessarily convex) set to a given function in the L p space of
extended real functions defined on a compact real interval for 1~ P~ 00.

In this article, an existence theorem for a best approximation is established
under certain general conditions on the subset. In addition, properties of
Lp-bounded subsets are investigated. The results are applicable to
Lp-approximation from subsets of various classes of functions including
quasi-convex, convex, super-additive, star-shaped, monotone, and n-convex
functions. Thus the analysis and results present a unifying development for
special classes of Lp-approximation problems.

Let 1= [a, b], be a real interval and H be the set of all extended real
valued functions on I. Let L p , 1~ p < 00, denote the Banach space of all
(equivalence classes of) Lebesgue measurable functions f in H with
SIfIp < 00 and norm Ilfll p = (S IfIp)I/p. Similarly, L oo is the Banach space
of (equivalence classes of) essentially bounded functions f with norm
Ilfll 00 = ess sup If I· Let Pc H be any (not necessarily convex) set. In what
follows, a notation such as P n L p denotes all equivalence classes in L p to
which a function in P belongs. As usual, we shall carry out arguments for
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a representative element of the equivalence class. Let IE Lp , 1~ P~ 00,

and L1 denote the infinum of III - kll p for k in P n L p • The problem under
consideration is to find gin P n L p , called a best approximation to I from
P n L p , so that

(1.1 )

For 1 < p < 00, Lp is uniformly convex and hence, a unique best
approximation from PnLp exists if PnLp is closed and convex [1,8].
However, we shall establish existence results for 1~ p ~ 00 under certain
conditions on a nonconvex P.

We say that Pc H is sequentially closed if it is closed under pointwise
convergence of sequences of functions. We denote by 1', the smallest super
set of P which is sequentially closed. Clearly, P is sequentially closed if and
only if P = P. Immediately below, we state three conditions for a given p
with 1~ p ~ 00. Not all conditions will be imposed at the same time.

(1) PnLp=PnLp. (This clearly holds if P=P.)

(2) There exists a positive integer z which depends upon P only and
the following holds: If k E P, there exists an integer 1~ r ~ z and points
{xi:O~i~r} with a=xo<x l < ... <xr=b so that k is monotone (non
decreasing or nonincreasing) on each interval (Xi-I, xJ The integer rand
the points {Xi}, which are called the partitioning points of k, depend
upon k.

(3) For every subset Be P n L p such that Ilkll p ~ D for all k in B for
some D > 0, there exists a positive integer r and points {Xi: °~ i ~ r} with
a = X o< X I < ... < X r = b, which depend upon B only and the following
holds: Functions in B are uniformly bounded and have uniformly bounded
total variation on every closed interval [c, d] c Ui (Xi-I, X;), the bounds
possibly depending upon [c, d].

Note that in condition (2) we do not assume that k is alternatively non
decreasing and nonincreasing or vice versa on the intervals (Xi _ I' XJ
Although this is the structure displayed by examples given below, it is not
necessary for analysis. Furthermore, the broad generality of the condition
allows for one type of monotonicity (nondecreasing or nonincreasing) to
exist in an interval without being restrained by types of monotonicity in
other intervals.

We show in Section 2 that if P satisfies conditions (1), (2) or (1), (3) for
some 1~ P~ 00, then P n Lp is closed in L p and a best approximation to
I in L p from P n L p exists. Fundamental to this result is the following
property of bounded sequences: If (k n ) is an Lp-bounded sequence in
P n Lp , then there exists a subsequence (g;) of (k n ) and g in P n L p such
that gi ...... g pointwise on I. In Section 3, we show that the stated conditions
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apply to the following classes of functions in H: Quasi-convex functions
(denoted by K q ), convex functions (Kc ), super-additive functions (Ka ), star
shaped functions (Ks )' monotone functions (Km ), and all k which are
n-convex on (a, b) (Kn ). Specifically, if Pc K x , where x = q, c, s, m, and n,
then P satisfies condition (2) or condition (3) for all p. If, in addition, this
P satisfies condition (1) for some p, then the property of bounded sequen
ces applies, P (\ L p is closed in L p , and a best approximation from P (\ L p

exists. In particular, these classes K x themselves satisfy condition (1) for all
p and, hence, the property of bounded sequences applies for all p, K~ (\ L p

is closed in L p , and a best approximation from Kx (\ L p exists. For subsets
of Ka these results hold under additional restrictions. We note that K q is a
cone which is not convex and that K x for x =c, a, s, m and n, are convex
cones as subsets of H.

A general theory for existence of a best approximation in a normed
linear space under certain given conditions is developed in [7]. According
to the terminology of that article, the a.e. convergence in the L p spaces is
the regular mode of sequential convergence. Furthermore, the property of
bounded sequences given above is the property of boundedly a.e. sequential
compactness of P (\ L p • According to the results of [7J, these conditions
the regular mode and boundedly compactness-are sufficient to ensure the
existence of a best approximation. Thus, our conditions, which are
designed to be applicable to the above special classes of functions, among
others, in L p , are stronger than those of [7] for a general normed linear
space and imply, for these classes, the conditions of [7].

The methods of analysis are based on convergence properties of sequen
ces of functions of bounded variation combined with special properties of
classes of functions under consideration. These are extensions of methods
used in the author's earlier work [23, 28] on quasi-convex and convex
approximation. The isotone approximation problem in Lp , 1 < P < 00,

which includes as a special case the monotone approximation problem, has
been investigated in [12] by methods involving a-lattices because of
its special structure. However, these methods cannot be applied directly to
our problem because of its more general setting involving several
different classes of functions for which an underlying a-lattice structure
is not available. Existence of a best isotone and, hence, monotone
L I -approximation follows from Proposition 4 of [13]. Continuity of a best
monotone Lp-approximation for 1~ p < 00 and its unicity for p = 1 under
certain mild conditions on f are established in [21] by a duality approach.
Star-shaped and super-additive functions are analyzed in [3, 10, 19].
Uniform approximation by star-shaped, quasi-convex, convex and
n-convex functions on a real interval or a subset of R" is considered in
[24-27, 30J, and least-squares approximation by quasi-convex functions in
[29]. Basic references on n-convex functions or closely related classes of
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functions which are convex with respect to an n-parameter family or
..i(n)-family of functions are [2, 4, 9, 11, 14, 22]. Uniform approximation
by an n-parameter family is considered in [22]. Finally, certain approxima
tion problems on L I are analyzed in [13, 20].

2. EXISTENCE OF A BEST ApPROXIMATION

In this section we show that, under conditions (1), (2) or (1), (3) of
Section 1, a best approximation from P n Lp to a given f in L p exists.

LEMMA 2.1. Assume condition (2) holds for P. Let k E P n L oo and let
{Xi: 0:::; i:::; r} be the partitioning points of k. Then Ik(s)1 :::; IIkll 00 for all s in
U {(X;_I' Xi): 1:::; i:::; r}; k is possibly infinite on {Xi}'

Proof Assume Ik(s)l> Ilkll oo for some s in (Xi-I, X;) for some i.
Assume again that k is nondecreasing on (X;_I' x;); the proof for the case
when k is nonincreasing is similar. If k(s» Ilkll oo , then k(t» Ilkll oo for all
tin [s,x;) and if k(s)< -llkll oo ' then k(t)< -llkll oo for all tin (xi_t,s].
This is a contradiction to the definition of Ilkll 00 and the proof is complete.

LEMMA 2.2. Assume condition (2) holds for P for some positive integer z.
Let (kn) be a sequence of functions in P n Lp , 1:::; p:::; 00, such that
Ilknll p :::; D for all n and some D > O. Then there exist an integer 1 :::; r:::; z,
points {Xi' O:::;i:::;r} with a=xo<x l < ... <xr=b, and a subsequence (hj)
of (kn) with the following properties:

(i) If CUi' v;] C (X;_" x;), 1:::; i:::; r, then Ih)1 :::; A on Ui CUi' v;] for all
j ~ N for some number A and integer N, both of which depend upon the
intervals [ui,v;].

(ii) Each hj , j~N, is monotone on [ui,v;].

Proof We first consider the case 1 :::; p < 00. We show that (hj ) satisfy
ing (i) and (ii) exist. Let {xn. i: 0 :::; i :::; rn} be the partitioning points of (kn)'
Since 1:::; rn:::; z, some integer rn= r is repeated infinitely often, and, by
compactness of I, some subsequence X nj .;, 0:::; i:::; r, of the partitioning
points converges to x" O:::;i:::;r, in I. Since xn,;<Xn,;+I' we have a=xo:::;
XI:::; ... :::; Xr= b. Some of the Xi may be identical. We first assume that
they are all distinct. Let h) = k nj . Let u; = (Xi_I + u;)/2 and v; = (Vi + x;)/2.
Choose N so that v;<Xnj,i<U;+I' l:::;i:::;r-l, for all j~N. By condi
tion (2), h) is monotone on each [u;, v;] and (ii) follows. Consequently,
his):::;hiu;) for u;:::;s:::;u; and hj(s)~hj(v;) for v;:::;s:::;v; or reverse
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inequalities hold for h)" Hence, if Xi denotes the indicator function of
[u;, u;] U [Vi' V;], it is easy to verify that

D ~ Ilh]llp~ IlhiX;llp

~ max{ Ihi(uJI, Ih)vi)l} min{ (u i - U;)l/p, (v; - VJl/p}.

(To show this, if hi is nondecreasing on [u;, va consider the following four
cases: hi(Ui)~h)vJ~O, O~h)uJ~h)vJ, O~ -h)uj~h)vJ, and h)uJ~

-hi(Vi)~O.) It follows that, for j~N,

1 ~ i~ r, (2.1 )

for some Ai which depends upon the intervals. Since hi is monotone on
[Uj, v,), it is bounded there by the left side of (2.1); hence Ihil ~ A j on
[Uj, v,) for j~ N. The number A in (i) equals max{A i }. Now, if not all X j

are distinct, then distinct Xi may be reindexed and a similar argument as
above may be applied.

If p = 00, then let {Xj}, (hi)' and N be as in the case 1~ p < 00. Then (ii)
holds. Again, by Lemma 2.1, Ih) ~ Ilhill oc ~ D on UCUi' v,) for all j ~ N.
Thus (i) holds with A = D. The proof is complete.

The following lemma may be proved by similar methods as above.

LEMMA 2.3. Assume condition (2) holds for P. Let k E P n Lp ,

1~ p < 00, and let {x j : 0 ~ i ~ r} be the partitioning points ofk. If [u" v,] c
(Xj_I,Xi), l~i~r, then Ikl is bounded on Ui[U"V,). Consequently, k is
finite on U, (X,-I' x,),

THEOREM 2.1. Assume conditions (1), (2) or (1), (3) holdfor P for some
1~ p ~ 00. Let (kn) be a sequence of functions in P n Lp, 1~ p ~ 00, such
that IIknllp ~ D for all n and some D > O. Then there exists a subsequence (gJ
of (kn) and a g in P n L p such that (gJ converges to g pointwise on I and
Ilgllp~D.

Proof Let conditions (1) and (2) hold for P for some p. We assume
first that 1~ P < 00. By Lemma 2.2, there exist points Xi' 0 ~ i ~ r. and a
subsequence (hJ of (k n ) with the properties stated there. Let 0 < e <
min {x, - Xi _ 1: 1~ i ~ r}12 and for each positive integer m, let

We let Xm be the indicator function of 1m. By Lemma 2.2, we infer existence
of A m' N mso that Ihjl ~ Am on 1mfor all j~ N m' Again, by the lemma, hjXm
is monotone on each interval [x I _ 1 + elm, Xi - elm] and zero elsewhere.
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Hence, the total variation of hjXm does not exceed 4rA m, as may be easily
verified. Thus, for each m, (hjXm)' j = 1, 2, ..., is a sequence of functions
which is uniformly bounded and has uniformly bounded total variation.
Hence, by Helly's selection theorem [15, p. 222] a subsequence (fli XI),
i = 1, 2, ... , of the sequence (hjX d converges pointwise to a function fl on I
which is bounded by A I' Again, by the same argument a subsequence
(f2iX2), i= 1, 2, ..., of (fliX2) converges pointwise to a function f2 on I
which is bounded by A 2 . We apply this diagonal procedure successively for
each m. Since 1mc 1m+1 we have fm=fm+1 on 1m. We define a function ljJ
on Um1m=Ui(Xi-I,XJ=J by ljJ(s)=fm(s) if sE1m • Clearly ljJ is well
defined and the diagonal sequence (ljJ i = fii) converges pointwise to ljJ on J.
Again a subsequence (gj) of (ljJJ converges on {Xi} possibly to ± 00. Thus
(gj) converges pointwise on I to an extended real function g where g = ljJ
on J and g is finite there.

We show that g E Lp . Since (g) is a subsequence of (h), we have
IlgjXmllp~ Ilgjllp~D and IgjXml ~Am for all sufficiently large j. Because of
finiteness of measure, constant functions are in L p • Hence letting j --+ 00 in
II gjXmllp ~ D and using the dominated convergence theorem we have
IlgXmllp~D. Now IgXmlPj IglP as m --+ 00 on J. Hence we conclude that
II gllp ~ D by the monotone convergence theorem. Thus g E Lp. Since gj --+ g
and 15 is sequentially closed we have g E P. Thus g E 15 (\ L p and it follows
by condition (l) that g E P (\ L p • If p = 00, then we may prove the result as
above using Lemma 2.2 and Helly's selection theorem.

Now assume that conditions (1) and (3) hold for P for some p. Then,
by condition (3), functions in B = {k n } are uniformly bounded and have
uniformly bounded total variation on 1m defined earlier. The rest of the
proof is similar to the one given above and is applied to (kn ) instead of (h).
The proof is complete.

We remark that for the first case involving conditions (1) and (2) in the
above proof, since g is the limit of (gj), it consists of monotone segments
as in condition (2). The set of partitioning points of g is contained in {Xi}
and not every Xi is necessarily a partitioning point of g. This is because
adjacent partitioning points may coalesce in the limit.

THEOREM 2.2. Assume conditions (1), (2) or (1), (3) hold for some p,
1~ p ~ 00. Then P n L p is closed in L p , and a best approximation to f in L p

from P n L p exists.

Proof Let 1~ p < 00. We first show that P (\ L p is closed. Let (k n ) be
a sequence in PnLp such that Ilkn-kllp--+O for some k in L p. We show
that k E P (\ L p • Indeed, there exists a subsequence (h n ) of (kn ) such that
hn --+ k a.e. Since Ilhnll p are bounded, by Theorem 2.1, there exists a sub-
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sequence (gj) of (h n) such that gj -+ g for some g in P n L p. Hence k = g
a.e. and P n Lp is closed.

To show the existence of a best approximation, let £1 be as in (1.1) and
let (kn) be a sequence in P n L p such that II!- knll p -+ £1. Then (kn) is
Lp-bounded and, by Theorem 2.1, there exists a subsequence (gj) of (kn )

and g in P n L p such that gj -+ g pointwise on I. By Fatou's lemma, we
have II! - gllp ~ lim infll! - gjllp = £1. Thus g is a best approximation. The
proof for p = 00 is simpler. The proof is complete.

We note that the metric projection and the set of all best approximations
to a given! for problem (1.1) have properties as stated in Theorem 2.7
of [7].

3. SPECIAL CLASSES OF FUNCTIONS

In this section we define special classes of functions in H and show that
conditions (1), (2) or (1), (3) of Section 1 apply to each of them.

(i) Quasi-Convex Functions

A function k in H is quasi-convex if

k(AS + (1- A)t) ~ max {k(s), k(t)}, (3.1 )

holds for all s, t in I, and all 0 ~ A~ 1 [16, 17]. Let Kg denote this class of
functions. The proof of the following proposition is similar to that of Satz 5
of [6] or Proposition 2.1 of [26].

PROPOSITION 3.1. k is quasi-convex if and only if there exists an x in I
such that k is nonincreasing on [a, x) ([a, x]) and nondecreasing on [x, b]
((x,b]).

Note that, in the above proposition, the partitioning point x may equal
a or b. Clearly, condition (2) applies to any Pc Kg with z = 2 and r = 1 or
2. If r = 1 then k is monotone, nondecreasing, or nonincreasing on I. Let
(kn) be a sequence in Kg such that kn -+ k pointwise on I. Then by (3.1),
k E Kg. Hence, Kg = Kg. Thus, conditions (1) and (2) hold for P = Kg for
all 1~ P ~ 00. If k E Kg n L p , any 1 ~ P ~ 00, then by Proposition 3.1,
Lemma 2.1, Lemma 2.3, and a simple argument we have k> -00 on
[a, x) u (x, b], k < 00 on (a, b), k(a) < 00 if x =a, and k(b) < 00 if x = b.

(ii) Convex Functions

We define convex functions as in [18] so that they can take values ± 00
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in addition to the reals. We consider two approaches to the problem. To
elaborate on the first approach, we let E(k) denote the epigraph of kin H:

E(k) = {(s, /1): SE I, - 00 < /1 < 00, /1 ~k(s)}.

We define k in H to be a convex function if E(k) is convex as a subset of
R 2 [18, p. 23]. Let K c denote this class of functions. Theorem 4.2 of [18]
states that k is convex if and only if k(As+(I-A)t)<Ay+(I-A)D,
whenever k(s) < y, k(t) < 15, where y,D are reals and 0:( A:( 1. We now
present the following simpler condition for convexity.

LEMMA 3.1. k is convex if and only if

k(AS + (1- A)t):( Ak(s) + (1- A) k(t), (3.2)

whenever k(s) < 00, k(t) < 00, and 0:( A:( 1.

Proof Assume k is convex, i.e., E(k) is a convex set. Let k(s) < 00 and
k(t) < 00. Let (Yn) and (D n) be sequences of real numbers such that
k(s) < Yn, k(t) < Dn, Yn --+ k(s), and Dn --+ k(t). Then (s, Yn) and (t, Dn) are in
E(k) and hence, by convexity of E(k), we conclude that (Jcs+(I-A)t,
AYn+(I-A)Dn) is in Ek • Thus, k(As+(1-A)t):(AYn+(I-A)Dn for all
n, and by taking limits (3.2) follows. Conversely, assume (3.2) holds. If
(s,y), (t,D) are in Ek> then k(s):(y<oo and k(t):(D<oo. Thus,
Ak(s)+(I-A)k(t):(Ay+(I-A)D<OO and, by (3.2), (As+(I-A)t,
AY + (1 - A) D) is in E k' Thus E k is a convex set and k is convex. The proof
is complete.

LEMMA 3.2. K, c Kq and K, = K,.

Proof Let kEKc , s, tEl, and O:(A:(1. If k(s)=oo or k(t)=oo
then (3.1) holds. Otherwise, Ak(s)+(I-A)k(t):(max{k(s),k(t)} and
(3.1) follows from (3.2). Thus, Kc c Kq . The assertion Kc = Kc may be
established by taking a convergent sequence in K c . The proof is complete.

The above lemma shows that condition (2) holds for any PeKe since it
holds for K q • Also conditions (1) and (2) hold for P = Kc for all 1 :( p:( 00.

The following lemma enables us to develop the second approach to our
problem by providing an alternative definition of convex functions.

LEMMA 3.3. Let k E K, II L p , 1:( p:( 00; then k> -00. Hence, k in Lp is
convex if and only if k > - 00 and

k( AS + (1 - A) t) :( Ak(s) + (1 - ).) k( t)

for all s, t in I and 0:( A:( 1. Furthermore k < 00 on (a, b).

(3.3 )
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Proof Suppose that k E K c n L p and k(s) = - 00 for some s in 1. If
Ik(t)1 = 00 for all t in I then k ¢ L p • Hence assume that Ik(t)1 < 00 for some
t in I. Without loss of generality assume that s < t. By (3.2) we conclude
that k = -00 on [s, t) and k ¢ L p • Hence k> -00. Now (3.3) is identical
to (3.2) when k(s) < 00 and k(t) < 00. When k(s) = 00 or k(t) = 00, then
(3.3) clearly holds since k> - 00. Alternatively, equivalence of (3.3) follows
from Theorem 4.1 of [18].

By convexity of E(k) or (3.3), if k(s) = 00 for some s in (a, b) then k = 00

on [a, s] or [s, b] and k¢Lp • Thus k< 00 on (a, b). This also follows from
the fact that K c c K q • The proof is complete.

Inequality (3.3) corresponds to the usual definition of a real-valued
convex function. Because k> -00, it avoids terms such as 00 - 00 when
k = 00. The second approach to our problem involving convex functions is
to define k to be convex if k > - 00 and it satisfies (3.3). Thus, let K~ be the
set of all so defined convex functions k in H. We may then show that
K~ c K q and K~ n L p = K~ n Lp for all 1:0:; p:O:; 00. The former is obvious,
the proof of the latter is similar to that of Lemma 3.3. Thus, condition (2)
holds for any P c K~, and conditions (1) and (2) hold for P = K~ for all
1 :0:; p:O:; 00. We remark that certain properties of sequences of convex func
tions are established in [28].

(iii) Super-Additive Functions

Let 1= [a, b] with a < 0 < b and a +b ~ O. A function k in H is said to
be super-additive if

k(s + t) ~ k(s) +k(t) (3.4 )

holds whenever s, t, s + t are in I and k(s) > -00, k(t) > -00. (This means
that when, for example, k(s) = +00 and k(t) = -00 and, consequently, the
value of k(s)+k(t) is left undefined, the value of k(s+t) is not restricted
by (3.4). See [10].) Let K a be the set of all super-additive functions on I.
Generally these functions are defined on unbounded intervals (0, 00),

( - 00,0), or (- 00, 00); however, for our purpose we define them on the
compact interval I. If k is super-additive and h(s) = k(s - c), where c is real,
then h is not necessarily super-additive on [a + c, b + c]. Hence, the
properties of these functions depend upon their domain of definition. It is
known that there are nonmeasurable functional solutions to (3.4).
However, since we are interested in functions in L p , we consider only
measurable super-additive functions.

PROPOSITION 3.2. Let Pc K a be such that k ~ h a.e. for all k in P, where
h is an a.e. finite measurable function on I. Also suppose that k(s) ~ -Cs for
all 0 < s < t: uniformly for all k in P where C > 0 and 0 < t: < b. Then condi-

640/57/2-8
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tion (3) holds for P with r= 1, i.e., with a=xo<x l =bfor alii ~p< 00. If
p = 00 then condition (3) holds for any Pc K a provided that k(s) ~ -Cs for
all °< S < e uniformly for all k in P.

Proof Let 1~ p < 00 and let Ilkllp ~ D for all k EBe P n L p • We show
that functions in B are uniformly bounded on [c, d] c (a, b). This part of
the proof uses certain ideas from [10], suitably modified to apply to our
setting in L p and augmented by additional arguments. We first make one
observation. Suppose that °< u < band k(u) =2p where - 00 ~ p < 00. If
s+t=u, s>O, t>O then k(u)~k(s)+k(t). Hence k(s)~p or k(t)~p.

Consequently, if E={SE(O,U): k(s)~p}, then (O,u)=Eu(u-E). It
follows that f.1(E) ~ u12. Now assume that c > 0. We show that functions in
B are uniformly bounded below on [c, d]. Otherwise, there exist sequences
(kn) in B and (un) in [c, d] such that Un --. u in [c, d] and kn(un)~ -2n.
By the above observation, if En= {SE(O, d): kn(s)~ -n}, then f.1(En)~

cl2 >°for all n. Let Gn= {s E (0, d): h(s) ~ kn(s)} and G = nn Gn. Then, by
hypothesis, f.1(G)=d. If Fn={SE(O,d): h(s)~ -n}, then FnnG-::::>EnnG.
Hence f.1(Fn)~f.1(En)~cI2. But Fn-::::>Fn+l , and hence f.1(F)~cI2 where
F= nn Fn= {s E (0, d): h(s) = -00 }. This is a contradiction since h is finite
a.e. Thus B is uniformly bounded below on [c, d], where c > 0. The proof
for a uniform lower bound on [c, d] when d < °is similar. Now assume
c < °< d. Choose b so that c < -2b < °< 2b < d. Then if u E [ -b, b], there
exist S in [c, -b], tin [b,d] so that u=s+t and kn(u)~kn(s)+kn(t).

Since (k n ) is uniformly bounded below on [c, -b] and [b, d], so it is on
[ -b, b] and hence on [c, d]. Thus the uniform lower bound in all cases
is established. (In fact, (kn ) is uniformly bounded below on I.)

To show the upper bound assume that B is not uniformly bounded
above on [c, d]. Then there exist sequences (k n ) in Band (v n ) in [c, d]
such that vn--.v in [c,d] and kn(vn)~n. Let O<O"<min{b-v, v-a}/S.
Choose N>O so that v-O"~vn~v+O" for all n~N. Let S satisfy v+20"~

S~ v + 30" < b. If tn=S- Vn' then, clearly, 0" ~ tn~ 40" < b. Since S=Vn+ tn'
we have kn(s) ~ kn(vn)+ kn(tn)' Now, by the first part, kn(t) ~ M> - 00 for
all n for all tin [0",40"]. Hence, kn(s)~n+M for all s in
J = [v + 20", V+ 30"]. If X is the indicator function of J, then we have

It follows that Ilknllp are not bounded, which is a contradiction. Thus a
uniform upper bound is established.

We now show that the total variation of k on [c, d] is uniformly boun
ded for all k in B. Assume, without loss of generality, that c ~°~ d and
c +d~ 0. First consider the interval [0, d]. Indeed, let °= So < SI < ... <
Sn = d be any partition of [0, d]. By combining adjacent intervals, if
necessary, first assume that k(Si_l) ~ k(s;) ~ k(Si+ d, i = 1, 3, ..., n - 2, and



L p APPROXIMAnON 233

k(sn_ d ~ k(sn), where n is odd. Let Ai =Si+ 1 - Si > O. Now, if 0 ~ S< t < b,
then t - S < b and we have by super-additivity, k(t) - k(s) ~ k(t - s). Thus,
o~ k(Si+ 1) - k(Si) ~ k(Ai) for i = 1, 3, ..., n - 2. Hence,

I Ik(Si+ 1) - k(s;)1 ~ II k(A;)1 ~ CA,

where A= L: Ai and all summations are over indexes i = 1, 3, ..., n - 2. (If
0<t-S<6 then k(t)-k(s)~k(t-s)~ -C(t-s) for all k in P by the
second assumption on P. This implies that k(s) ~ -Cs for all 0 < s ~ b for
all k in P and, in particular, k(A i) ~ -CA; for all i. Thus functions in Pare
uniformly bounded below on (0, b] by - Cb. Hence, the lower bounding
function h is really effective on [a, 0].) Now, if 0 ~ s < t < u < b, then as
above k(u) - k(t) ~ k(u - t) and hence k(t) - k(s) ~ k(u) - k(s) - k(u - t).
We therefore have

for i = 1, 3, ..., n - 2. Summing the above and combining with the previous
inequality, we have,

where the summation is over all indexes 1,2, ..., n - 1. Note that 0 < A~ d
and, hence, if M is the uniform bound on Ikl on [c, d], then L: Ik(s;+ d
k(s,)1 ~ 4M + 2Cd. All other cases, for example, having k(s; _ d ~ k(s;) ~
k(Si+l)' i= 1, 3, ..., n-1, where n is even, or these inequalities for
i = 1, 3, ..., n - 2 and k(s n_ 1) ~ k(s n), where n is odd, may be considered
similarly. Thus, we have shown that all k in B have uniformly bounded
total variation on [0, d]. A similar conclusion may be drawn for [c,O]
and therefore for [c, d]. (Since c +d~ 0, the proof for [c, 0] is identical to
that for [0, d] as Ai ~ -c implies A; ~ d.) Now consider the case p = 00. If
k E B c P n L 00' then k ~ - D a.e. for all k in B. With this observation, the
results for this case may be proved as above or otherwise. (Note that in
this case one may show that -2D~k~D on (a, b) and k(b)~ -2D.) The
proof is complete.

We note that if k E K a n L p , 1~p ~ 00, then Ikl < 00 on (a, b) by a proof
as in Proposition 3.2. For such a k we have O~k(O)~k(s)+k(-s) for
0< s ~ -a ~ b. Hence the assumption that k(s) ~ -Cs for 0 < s < 6 as in
Proposition 3.2 implies that k(s) ~ -Cs for a ~ s ~ 0 in addition to
k(s) ~ -Cs for 0 < s ~ b. Thus the functions in P are uniformly bounded
above on [a, 0] by - Ca. Let La C K a be the set of all k in K a such that
k ~ h a.e. and k(s) ~ -Cs for 0 < s < 6 where h, C and 6 are as in the
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statement of Proposition 3.2. Again, let Mae Ka be the set of all k in Ka
such that k(s)~ -Cs for O<s<s. Then, clearly, La=La and Ma=Ma.
Hence, condition (1) holds for La for 1~ p < 00, and for M a if p = 00.

(iv) Star-Shaped Functions

In this case we consider 1= [0, b]. A function k in H is star-shaped if
k()s) ~ Ak(s) for all s in I, and all °~ A~ 1 [3]. Equivalently, k is star
shaped if k(O)~O and k(s)/s~k(t)/t whenever O<s~t~b. Let Kg be the
set of all star-shaped functions.

PROPOSITION 3.3. For any Pc Ks condition (3) holds with a = °and
r = 1, i.e., with 0= xo< X I = b, for all 1~ P ~ 00.

Proof Assume first that 1~ p < 00. Let Ilkllp ~ D for all k E Be P n Lp •

We show that functions in B are uniformly bounded on [c, d] c (0, b). Let
h(s)=k(s)/s, O<s~b. Then h is nondecreasing on (0, b]. Let X be the
indicator function of [c, d]. Since Ik(s)1 ~clh(s)1 for all s in [c, d] and h
is nondecreasing on (0, b], we have for all k in B,

D ~ Ilkllp ~ Ilkxllp ~ c Ilhxllp

~cmax{lh(c)l, Ih(d)l} min{c 1
/P, (b-d)l/p}.

It follows that max {lh(c)l, Ih(d)1 }~ A for some A which is independent of
k. By monotonicity of h, we have Ih(s)1 ~max{lh(c)l, Ih(d)l} for all s in
[c, d], and this gives Ik(s)1 ~dlh(s)1 ~dA for all s in [c, d] for all k in B.
Thus a uniform bound is established.

Now we assert that the total variation of k on [c, d] is uniformly
bounded for all k in B. This follows at once from the fact that k(s) = sh(s)
on [c, d] where h is nondecreasing and hence of total variation h(d) - h(c)
on [c, d]. Using an elementary argument or Theorem 3 of [15, p. 216], we
conclude that the total variation on [c, d] of any k in B is bounded by

(d- c) sup{ Ih(t)l: t E [c, d]} + dlh(d) - h(c)1 ~ (3d- c)A,

where A, as shown above, is independent of k. The case for p = 00 is
simpler and may be similarly proved.

It is easy to see that Kg = Kg and thus condition (1) holds for P = Kg for
all 1~ P~ 00 in addition to condition (3) as shown above. If k E Kg n Lp ,

any 1~p~ 00, then k> -00 on (0, b] and k< 00 on [0, b).
We now state three results from [10] which present a comparison of

some function classes.

(a) If k is star-shaped on (0, b), i.e., k(s)/s is nondecreasing, then k
is super-additive, but need not be convex or concave on (0, b).
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(b) If k is concave and super-additive on (0, b) then k is star-shaped.

(c) A necessary and sufficient condition that a convex function k be
super-additive on (0, b) is that k(O + ):::; O.

(v) Monotone (Nondecreasing) Functions

k in H is monotone if k(s):::; k(t) for all s:::; t. Let Km denote this class.
Then, clearly condition (2) holds for any Pc Km. Also Km= Km; thus con
ditions (1) and (2) hold for P = Km for all 1 :::; p:::; co. Note that Kmc Kq •

If kEKmnLp , any l:::;p:::;oo, then k> -co on (a,b] and k<co on
[a, b). This is the simplest case of functions under consideration.

(vi) n-Convex Functions

A real-valued function k on (a, b) is called an n-convex function (n ~ 1)
if for all choices of n or n + 1 points {Si} any of the following three equiv
alent conditions holds.

(a) If a<sl <S2<'" <sn<b then (_l)n+i+l (P(s)-k(s))~O for
all s in (Si' Si+ d, 1:::; i:::; n -1, where pes) is the unique Lagrange inter
polating polynomial of degree at most (n - 1) passing through the points
(si,k(sJ),I:::;i:::;n.

(b) If a<sO<sl < ... <sn<b, then

[

Iso

1 Sl
det : :

1 Sn

(c) If a < So < S1 < ... < Sn< b, then the nth order divided difference
[so, Si> ..., Sn; k] of k is nonnegative. (For a definition of the divided
difference see [5, p.40] or [17, p.237]).

Equivalence of these definitions may be established by elementary
methods or comparing definitions in [17]. We observe that I-convex and
2-convex functions are, respectively, real-valued nondecreasing and convex
functions on (a, b). More complex cases of n-convex functions occur for
n ~ 3. Since about 1940 there has been a considerable literature on
n-convex functions and, more generally, functions which are convex with
respect to an n-parameter family or a A.n-family of functions. Some basic
references are listed in Section 1; a brief survey appears in [17]. As it is not
our purpose to delve deeply into this area in this work, we merely state two
known properties of n-convex functions which can be derived directly from
definition (a).
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(1) If {Si} and P(s) are as in definition (a), then (P(s)-k(s))~O on
(sn' b) and (_1)n - I (P( s ) - k(s)) ~ 0 on (a, sd.

(2) For every n-convex function k there exist an integer r, 1~ r~ n,
and points {Xi} with a = Xo< XI < ... < Xr = b such that the following
holds: If r=n, then (-l)n+ik is nondecreasing on (Xi_I,XJ for all
1~ i~ n. If r < n, then ( -1 r+ i k (or equivalently ( -1 )ik) is nondecreasing
on (Xi-I> xJ for all i or nonincreasing on (Xi-I' Xi) for all i. The integer
r and points {Xi} depend upon k.

We let K n denote all functions k in H such that k is (real-valued)
n-convex on (a, b). It follows at once from property (2) above that condi
tion (2) holds for any Pc K n with 1~ r ~ z = n. The following proposition
shows that condition (1) holds for P = K n for all 1~ p ~ 00.

PROPOSITION 3.4. K n n L p = Kn n L p , 1~ P ~ 00.

Proof Let k E Kn n L p , we show that k E K n . We assert that Ikl < 00 on
(a, b). Suppose that k( t) = - 00 for some t in (a, b); then we reach a con
tradiction as shown below. There exists a point, say, tn in (t, b) such that
Ik(tn)1 < 00, otherwise k ¢ Lp , for any p. Set tn_ 1= t. Again, there exists a
point tn- z in (a, tn-I) such that Ik(tn-z)1 < 00, otherwise k¢Lp • Arguing
in this manner, we have a=tO<t 1 < .. · <tn<tn+l=b such that
Ik(tJI<oo, i=1,2,oo., n-2, n, and k(tn-I)= -00. Now, since kEKn ,

there exists a sequence (km) in Kn such that k m --+ k pointwise on I. Let
Pm(s) be the interpolating Lagrange polynomial passing through
(ti,km(tJ), 1~i~n, as in definition (a). We state the formula for Pm(s)
[5, p. 33]. Let

Then,

We have km(tJ--+k(tJ for all i. Clearly, Ln_l(s)<O for all s in (tn,b).
Since km(tn-d--+ -00, we conclude that Pm(s)--+oo for all s in (tn, b).
Now, by property (1) we have km(s) ~ Pm(s) on (tn, b) for all m. It follows
that k(s)= 00 on (tn, b). Thus k¢Lp , a contradiction and hence k> -00

on (a, b). In a similar manner, by assuming that k( t) = 00 for some t, we
may show that k < 00 on (a, b). In this case, we determine {t i} as above
with a=to<t l < ... <tn<tn+l=b, tn=t, Ik(tJI<oo, 1~i~n-1, and
k(t ll ) = 00.
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Now let {s;} be any n points in (a, b) as in definition (a). If P', P'm are
the interpolating Lagrange polynomials passing through (s;, k(s;)) and
(s;, km(s;)), respectively, then since k m -+ k on I, we have that P'm -+ pi on
(a, b). Since definition (a) holds for P'm, k m for all m, and k is finite on
(a, b), in the limit it must also hold for P', k. Thus k is n-convex on (a, b)
and it follows that k E K n • The proof is complete.

We summarize by applying Theorems 2.1 and 2.2 to the above classes of
functions.

THEOREM 3.1. Let P c Kx' where x = q, c, s, m and n. Assume P satisfies
condition (1) for some 1~ p ~ 00. Then the following (a) and (b) apply to P
for p.

(a) If (k n) is a sequence offunctions in P n L p such that Ilknll p ~ D for
all n and for some D > 0, then there exists a subsequence (gj) of (k n ) and a
g in P n L p such that (gJ converges pointwise to g on I and II gil p ~ D.

(b) P n L p is closed in L p and a best approximation to f in L p from
P n L p exists.

In particular, since P = K n x = q, c, s, m, n, satisfies condition (l) for all
1~ p ~ 00, the above conclusions (a) and (b) are applicable to P = K, for
all 1~ p ~ 00.

The results for Ka are somewhat different. Let h be an a.e. finite
measurable function on I and 0 < e < b. Let Pc Ka be such that k ~ h a.e.
for all k in P and k(s)~ -Cs for all O<s<e some C>O for all k in P.
Assume P satisfies condition (l) for some 1~p < 00. Then conclusions (a)
and (b) apply to P for p. Ifp = 00 and condition (1) holds for Pc Ka where
k(s) ~ -Cs for all 0 < s < e for all k in P, then (a) and (b) with p = 00

apply to P. Let La C K a be the set of all k in K a such that k ~ h a.e. and
k(s) ~ -Cs for 0 < s < e. Also let Mae K a be the set of all k in K a such that
k(s)~ -Cs for O<s<e. Then La and M a satisfy condition (1) for all
1~p< 00 and p= 00 respectively, and hence, conclusions (a) and (b)
apply to P=L a for alII ~p< 00 and to P=Ma for p= 00.
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